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Abstract. We discuss the near–threshold behavior of the ω production amplitude in the reaction π−p →
ωn. In contrast to the results of earlier analyses we find that the averaged squared matrix element of the
production amplitude must be a decreasing function of energy in order to describe the existing experimental
data.

PACS. 13.60.Le Meson production – 25.80.-e Meson- and hyperon-induced reactions

1 Introduction

The reaction π−p → ωn near threshold was studied rela-
tively long ago [1–3]. The authors of those papers claimed
to have found an abnormal behavior of the production
amplitude for this reaction near threshold that is not yet
understood theoretically [4]. This conclusion was based on
a comparison of the measured cross section with that for
the production of a stable particle. Specifically, they found
that the production cross section is proportional to P ∗ 2

instead of P ∗, as expected. (P ∗ denotes the momentum
of the outgoing neutron in the center of momentum sys-
tem.) This behavior was interpreted as possible evidence
for a resonance in the ωN system not far above threshold
[2]. At the same time there are no direct indications of
the existence of such a resonance in the π−p–channel. Re-
cently a behavior similar to that of the cross section under
discussion was also found in the reaction pd→ ω 3He [5].

The transition amplitude πN → ωN , while interesting
in its own right, is also of great importance in other reac-
tions. Theoretical analyses of the reactions pp→ ppω [4],
pn → dω [6] and dp → 3Heω [7], as well as ω production
in proton–nucleus collisions [8] all rely on the πN → ωN
transition amplitude, in which the pion enters as an ex-
changed particle, as the basic mechanism for the reactions
studied. It is thus of great theoretical interest to obtain
direct, reliable experimental information on this reaction.

The experiments cited above were all performed in an
unusual kinematical situation: instead of measuring the
momentum distribution of the final state for a fixed beam
energy, the excitation function for a fixed neutron momen-
tum versus initial energy was measured.

In this work we analyze the general expression for the
production cross section of unstable particles in near–
threshold binary reactions. Both situations – the standard
one, wherein the energy is fixed and the final state mo-
mentum is varied – and that of the above experiments,
wherein one of the final momenta is fixed while varying
the energy, are compared. We shall demonstrate that the
dependence of the count rates on the outgoing center of
mass momentum depends on how the analysis is done. We
conclude that the behavior of the ωn amplitude is quite
normal. That means that the earlier interpretation of the
experimental data [1–3,5] is incorrect. To explain the re-
sults of the cited papers, we need a smooth behavior of
the averaged matrix element that must be a decreasing
function of energy in the near–threshold region.

We begin by discussing the production of a resonance
using a monochromatic beam. We then consider the in-
tegration of the so-obtained cross section over the beam
energy, which is the procedure that was carried out ex-
perimentally in [1–3]. We close with a discussion of the
formulae used in the cited papers to analyze the experi-
mental data.

2 Cross section for the production of an
unstable particle

Let us consider the case of a monochromatic beam of en-
ergy E1. In this case the differential cross section dσ/dΩ

1 Note, that all kinematical quantities are given in the center
of mass.
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for production of a stable particle is

dσ

dΩ

∣∣∣
stable

=
µi(2π)4

pi

×
∫
| T (E,k) |2

× δ(E −M −m− k2/2µ)k2dk, (1)

where µi (µ) and pi (k) denote the reduced mass
and the momentum of the initial state (final state) re-
spectively. This integral is proportional to k(E,m) =√

2µ(E −M −m) after the integration is performed. If we
consider the cross section for the production of an omega
meson or any other resonance with finite width Γ , ex-
pression (1) must be convoluted with the spectral density
ρ(m,Γ ). For simplicity we use a Breit-Wigner form for the
spectral density, namely

ρ(m,Γ ) =
Γ/2π

(m− m̄)2 + Γ 2/4
. (2)

Here m̄ is the average mass of the unstable particle. In
this case the resonance production cross section is given
by the expression:

dσ

dΩ

∣∣∣
unstable

=
µi(2π)4

pi

×
∫ Kmax

0

Γ/2π
(Ekin − k2/2µ)2 + Γ 2/4

× | T (E,k) |2 k2dk , (3)

where Ekin = E − M − m̄ and Kmax is the maxi-
mum momentum of the outgoing neutron for the reac-
tion π−p→ ωn. Kmax is determined by the masses of the
lightest decay products of the unstable particle.

Note that, because of the experimental setup, the au-
thors of the papers [1–3] have not measured the total dif-
ferential cross section for the production of an unstable
particle as given by (3), but only a fraction of it, as the
momentum of the outgoing neutron was constrained to
lie in a small band around a given P ∗. In other words,
they have measured the following part of differential cross
section:

dσ

dΩ

∣∣∣
∆P

=
µi(2π)4

pi

×
∫ P∗+∆P/2

P∗−∆P/2

Γ/2π
(Ekin − k2/2µ)2 + Γ 2/4

× | T (E,k) |2 k2dk , (4)

Let us estimate the remaining integral for the case when
the scattering amplitude | T (E,k) | is approximately con-
stant in the interval ∆P , as one would expect close to the
production threshold. In this case we get

dσ

dΩ

∣∣∣
∆P
∝| T (E,P ∗) |2 I(Ekin), (5)

where

I(Ekin) =
µ

π

√
µΓ

∫ a+

a−

√
ydy

(y − y0)2 + 1
(6)

and y0 = 2Ekin/Γ . Here the limits are a± = (P∗±∆P/2)2

µΓ .
As will become clear below, the behavior of the integral
depends on the parameter

χ(P ∗) := a+ − a− ≡
2P ∗∆P
µΓ

. (7)

Let us consider the case of small P ∗ and ∆P such that
the condition

I(Ekin) ≈ χ(P ∗)¿ 1 (8)

is satisfied. In this limit the denominator under the inte-
gral is practically constant, so that we have

I(Ekin) ≈ µ

π

√
µΓ

1
(y∗ − y0)2 + 1

∫ a+

a−

√
ydy

=
2
πΓ

P ∗2∆P + 1
12 (∆P )3

(y∗ − y0)2 + 1
, (9)

where y∗ = P ∗2/µΓ . The dependence of this integral on
energy looks like a BW-resonance with strength propor-
tional to P ∗2. This was the dependence found in [1].

In the experiments [1–3] an additional integration over
the beam energy (still keeping P ∗ fixed) was performed in
order to remove the width-dependence from (9). Indeed,
since the spectral density is normalized, integrating over
the beam energy gives∫

dEkinI(Ekin) ' P ∗2∆P +
1
12

(∆P )3 . (10)

The above derivation shows specifically that

| T (E,P ∗) |2∝ 1
g(P ∗)

dσ

dΩ

∣∣∣
∆P

, (11)

where g(P ∗) = P ∗2 + 1
12 (∆P )2. The right hand side of

this equation is displayed in Fig. 1, based on the data of
[3] for the points with P ∗ ≥ 50MeV/c. As for the point
at 30MeV/c, we used the data from [2], averaged over
an interval of ∆P = 20MeV/c. Note that the errors of
(dσ/P ∗2) displayed in the plot contain the uncertainty
in P ∗ as well. Figure 1 gives evidence for a matrix ele-
ment | T (E,P ∗) | that is practically constant, at least for
the points P ∗ ≤ 110MeV/c. The data above 110MeV/c
give evidence for a matrix element that decreases smoothly
with P ∗, as would be expected in the usual effective range
approximation. We conclude therefore that the existing
experimental data [1–3] for the reaction π−p → ωn give
no indication of a growth of the matrix element for increas-
ing P ∗ in a wide interval of momenta P ∗ above threshold.
Note that the over–all dependence of the matrix element
on P ∗ is contrary to the conclusions of [1-3].
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Fig. 1. The cross section data normalized to g(P ∗) = P ∗2 +
1
12

(∆P )2. The curve is introduced to guide the eye. The data
are from [2,3], where the errors where modified according to
the uncertainty in P ∗

We now investigate the second limiting case,

χ(P ∗)À 1. (12)

To estimate the integral (6) in this situation we must fur-
ther distinguish separately two possibilities:

i) The energy parameter y0 is within the limits a+ and
a− of the integral (6). In this case

I(Ekin) ≈
√

2µEkin. (13)

ii) The energy parameter y0 is not within the interval
[a−, a+]. The integral I(Ekin) is then strongly suppressed.

In short, if condition (12) is satisfied we get the usual
energy behavior for the differential cross section, namely
a linear P ∗–dependence.

The condition
χ(P ∗) ≈ 1

determines the critical value of P ∗. Thus, by measuring
the count rates versus P ∗ one may observe a transition
from a P ∗2 behavior of the cross section at low P ∗ to a
linear dependence at high P ∗, even for a constant matrix
element. In the case of the omega this takes place at P ∗cr =
µΓ/2∆P ≈ 90MeV/c, if ∆P ≈ 20 MeV, as specified in
[2].

In [1] the production of η and η′ was studied as well.
The authors report that here a behavior very different
from what they found for ω production. Using the above
discussion one can now easily understand this: for both
mesons condition (12) was satisfied, since P ∗cr = 0.01 MeV
for the η and P ∗cr = 2.4 MeV for the η′.

To complete our criticism of the analyses of [1–3], we
compare our formulae to those given therein. Let us start
by briefly repeating the arguments for a linear depen-
dence of the ω production cross section on P ∗ given in

ω

T
p

k

N N

π

Fig. 2. Illustration of the reaction πN → ωN as a three par-
ticle reaction taking into account the decay of the ω

[1]. Instead of (1) for the production of a stable parti-
cle, [1] starts directly from the expression for the double–
differential cross section,

d2σ

dmdΩ
∝ ρ(m,Γ )P ∗ . (14)

In order to get the total production rates for produc-
ing final particles with a given P ∗, expression (14) was
integrated over the initial energy under the constraint
P ∗ = const. By employing energy conservation, i.e. us-
ing the condition

dm = dE for P ∗ fixed , (15)

(14) can be formally integrated. Since the spectral density
is normalized, this integration yields

dσ(P ∗)
dΩ

∝ P ∗ . (16)

This procedure to obtain (16) from (14) looks formally
correct, but it is not. The reason for this is that in order
to derive (14) the energy conserving δ–function in (1) was
evaluated. Therefore P ∗ in (14) implicitly depends on E
and m and thus must be treated as a dependent variable
in any argument based on (14). Therefore the use of the
relation (15) in this context is simply incorrect. Instead,
the condition of allowing P ∗ to vary only in a small inter-
val translates into a condition on the ranges of integration
of m, given a fixed energy E, namely

dσ

dΩ
∝
∫ m0+χΓ/2

m0−χΓ/2
ρ(m,Γ )P ∗ , (17)

with m0 = E−M −P ∗2/2µ. This formula actually agrees
with our (5) if we rewrite it in terms of an integration
over dm. Therefore we conclude that in the theoretical
analysis of [1–3] the limits of integration were not properly
treated, thereby leading to an inappropriate conclusion for
the momentum dependence of the cross section.

It is this point that was overlooked in the earlier works.
If we impose the limit ∆P → 0 on (17) and integrate over
the energy we again find

dσ

dΩ
∝ P ∗2∆P .

To clarify the situation we would like to add that the
final result agrees with what one expects when taking the
decay of the unstable particle into account explicitly. Let
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us, for simplicity, assume a two particle decay2, as illus-
trated in Fig. 2. In this case the phase space is the 3 body
phase space and we get

dσ ∝ d3kdΩpµd|p| | T (E,k)Dω(P 2)W (m, p) |2 , (18)

where Dω denotes the dressed ω propagator, W is the de-
cay amplitude, µd is the reduced mass of the decay parti-
cles and p their relative momentum. Therefore (18) agrees
with (3) when we identify

ρ (m,Γ ) =
∫
dΩpµd|p| | Dω(m)W (m, p) |2

= − 1
π
Im(Dω(m)), (19)

where we used unitarity for the second identity. Equation
(19) agrees with the standard definition of a spectral func-
tion.

3 Summary

To summarize, we demonstrated that the interpretation of
the experimental results for the reaction π−p→ ωn given
in [1–3] is incorrect. A proper treatment of the indepen-
dent variables leads to an expression for the momentum
dependence of the integrated cross section that is consis-
tent with a constant matrix element near the production
threshold.

The procedure of [1–3] was also used in [5] and thus
our criticism applies to the conclusion of this paper as
well. However, we want to emphasize that we regard the
method of integrating over the beam energy while keeping
the final momentum fixed as useful way to examine the
production of narrow resonances close to their production
threshold. This technique allows for a more direct access
to the production amplitude and, simultaneously, to an
increase in the counting rate.

2 What follows is exact under the assumption that the unsta-
ble particle decays into this channel only. However, the general-
ization is straightforward and only complicates the argument.

We demonstrated that as the momentum P ∗ grows,
the formula for the cross section reduces to the standard
one for the production of a stable particle, as expected.
The relevant parameter is χ = 2P∗∆P

µΓ .
The knowledge of the transition amplitude πN → ωN

is an important input for several approaches investigating
ω production in hadron–hadron collisions [4,6–8]. A better
understanding of its energy dependence therefore will help
us to get deeper insight in the strong interaction of vector
mesons and nucleons and nuclei in the intermediate energy
regime.
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